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Abstract. TFIDF was widely used in IR system based on the vector
space model (VSM). Pagerank was used in systems based on hyper-
link structure such as Google. It was necessary to develop a technique
combining the advantages of two systems. In this paper, we drew up a
framework by using the content of web pages and the out-link informa-
tion synchronously. We set up a matrix M, which composed of out-link
information and the relevant value of web pages with the given query.
The relevant value was denoted by TFIDF. We got the NewPR (New
Pagerank) by solving the equation with the coefficient M. Experimen-
tal results showed that more pages, which were more important both in
content and hyper-link sides, were selected.

1 Introduction

With information proliferate on the web as well as popularity of Internet, how
to locate related information as well as providing accordingly information inter-
pretation has created big challenges for research in the fields of data engineering,
IR as well as data mining due to features of Web (huge volume, heterogeneous,
dynamic and semi-structured etc.). [1, 2]

As a user, in order to find, collect and maintenance the information, which
maybe useful for the specific aims, s/he has to pay more time, money and at-
tention on the retrieval course.

While web search engine can retrieve information on the Web for a specific
topic, users have to step a long ordered list in order to locate the valuable infor-
mation, which is often tedious and less efficient due to various reasons like huge
volume of information. For most of the users, they may not express their needs
clearly with a few keywords. Users may be just interested in “most qualified”
information or one peculiar part of returned information.

The search engines are based on one of the two methods, the content of the
pages and the link structure.
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The first kind of search engineers works well for traditional documents, but the
performance drops significant when applied to the web pages. The main reason
is that there are too much irrelevant information contained in a web page.

The second one takes the hyperlink structures of web pages into account in
order to improve the performance. The examples are Pagerank and HITS. They
are applied to Google and the CLEVER project respectively.

However, these algorithms have shortcomings in that (1) the weight for a web
page is merely defined; and (2) the relativity of contents among hyper linking
web pages is not considered. [2]

In this paper, we combine the relevance and the Pagerank of the web page
in order to refine the retrieval results. We compute the TFIDF value firstly. And
then, we compute the new Pagerank by the TFIDF and the out-link information
of every page. The new Pagerank is called NewPR.

This paper is organized as follows: Section 2 introduces the concept of Pager-
ank and TFIDF. Section 3 describes the algorithm of NewPR. Section 4 presents the
experimental results for evaluating our proposed methods. Finally, we conclude
the paper with a summary and directions for future work in Section 5.

2 Basic Concept

2.1 Pagerank

The Google search engine is based on the popular Pagerank algorithm first in-
troduced by Brin and Page in Ref. [3].

Considering the pages and the links as a graph G = P (Page, Link), we can
describe the graph by using the adjacency matrix. The entries of the matrix, for
example pij , can be defined as:

pij =
{

1 ∃Link(i → j)
0 Otherwise.

Here i, j ∈ (1, n) and n is the number of web pages. Because the total probability
from one page to others can be considered 1, the rows, which correspond to pages
with a non-zero number of out-links deg(i) > 0, can be made row-stochastic (row
entries non-negative and sum to 1) by setting pij = pij/deg(i). That means if
the page u has m out-links, the probability of following each of out-links is 1/m.
We assume all the m out-links from page u have the similar probability.

For a real adjacency matrix P , in fact, there are many special pages without
any out-link, which are called dangling page. Any other pages can reach the
dangling page in n(n ≥ 1) steps, but it is impossible to get out. In the adjacency
matrix, the row, corresponding to the dangling page is all zeros. Thus, the matrix
P is not a row-stochastic. It should be deal with in order to meet the requirement
of the row-stochastic.

One of the ways to overcome this difficulty is to change the transition matrix
P slightly. We can replace the rows, all of the zeros, with v = (1/n)eT , where
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eT is the row vector of all 1s and n is the number of pages of P contains. The
P will be changed to P ′ = P + d · vT . Where

d =
{

1 if deg(i) = 0
0 Otherwise.

is the dangling page indictor [4]. If there were a page without any out-link from it,
we could assume it can link to every other pages in P with the same probability.
After that there is not row with all 0s in matrix P ′.

P ′ is row-stochastic and it corresponds to the stochastic transition matrix over
the graph G. Pagerank can be viewed as the stationary probability distribution
over pages induced by a random walk on the web. It can be defined as a limiting
solution of the iterative process.

Because of the existing of zero entries in the matrix P ′, it cannot guarantee
the existence of the stationary vector. The problem comes from that the P ′ may
be reducible. In order to solve the problem, P ′ can be modified by adding the
connection between every pair of pages [4].

Q = P ′′ = cP ′ + (1 − c)evT , e = (1, 1, · · · , 1)T .

Where c is called dangling factor, and c ∈ (0, 1) . In most of the references, the
c is set [0.85,1). [3]

After that, the Q is irreducible because all of the pages are connected (strong
connection). For Q

(k)
ii > 0, (i, k ∈ (1, n)) , the Q is aperiodic too. The Perron-

Frobenius theorem guarantees the equation x(k+1) = QT x(k) (for the eigensys-
tem QT x = x ) converges to the principal eigenvector with eigenvalue 1, and
there is a real, positive, and the biggest eigenvector. [5, 6]

2.2 TFIDF

TFIDF is the most common weighting method used to describe documents in the
Vector Space Model (VSM), particularly in IR problems. Regarding text catego-
rization, this weighting function has been particularly related to two important
machine learning methods: kNN (k-nearest neighbor) and SVM(Support Vec-
tor Machine). The TFIDF function weights each vector component (each of them
relating to a word of the vocabulary) of each document on the following basis. [7]

Assuming vector d̃ = (d(1), d(2), ..., d|F |) represents the document d in a vector
space. Each dimension of the vector space represents a word selected by the
feature selection. The value of the vector element d(i)(i ∈ [1, |F |]) is calculated
as a combination of the statistics TF (w, d) and DF (w).

TF (w, d) is the number of the word w occurred in document d. DF (w) is
the number of documents in which the word w occurred at least once time. The
IDF (w) can be calculated as

IDF (w) = log
Nall

DF (w)
.
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Where Nall is the total number of documents. The value d(i) of feature wi for
the document d is then calculated as d(i) = TF (wi, d)× IDF (wi). Where d(i) is
called the weight of word wi in document d. [7]

The TFIDF algorithm learns a class model by combining document vectors into
a prototype vector C̃ for every class C ∈ Ç. Prototype vectors are generated by
adding the document vectors of all documents in the class.

C̃ =
∑
d∈C

d̃.

This model can be used to classify a new document d′. Assuming vector d̃′
represents d′, the cosine distance between d̃′ and C̃ is calculated. The d′ is
belonged to the class with which the cosine distance has the highest value.

3 Algorithm of the NewPR

3.1 Precision and Recall

For a retrieval system, there are 2 sides should be considered, the precision and
the recall. Just as the illustrator in Fig.1, we can get,

Precision =
B

Ret
; Recall =

B

Ref
; γ =

Ref

A + B + C + D
=

Ref

N
.

For a given retrieval system, the average value of precision and γ can be
estimated. As the N is very large, γ is expected to be very small.

3.2 Page Link

We donate the query from the user with Q, all of the pages selected by retrieval
system relevant to Q with Y = {yi, i ∈ (1, n)}. The probability from Q to Y is
P = {pi, i ∈ (1, n)} , and from yi returns to Q is 1 − π. In our experiment, P is
the TFIDF values of Q to Y .

Fig.1 Concept of Information Retrieval Fig.2 Information of Links
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(A) From Y to Y0 (B) From Y to others (C) From Y0 to others

Fig. 3. Link Information of each page

We assume all the pages, which are not included in set Y , are included in a
set Y0. The probability of Y0 transfers to itself is D0, to Y is D = {di, i ∈ (1, n)}
and to Q is 1 − ρ. p0 is probability from Q to Y0. It is the sum of TFIDF values
of Q to Y0. The link information is showed in Fig.2.

Because the return link from Y to Q means the page belonged to part A in

Fig.1, the probability 1−π =
A

Ret
=

A + B − B

Ret
=

Ret − B

Ret
= 1−Precision. ⇒

π = Precision.
For the Q, assuming si is the TFIDF value, we get,

p0 +
n∑

i=1

pi = 1, p0 = β
∑

i/∈(1,n)

si, pi = βsi ⇒ β
∑

i/∈(1,n)

si + β
∑

i∈(1,n)

si = 1

⇒ β =
1∑

i∈ALL

si
, p0 = 1 −

∑
i∈(1,n)

si

∑
i∈ALL

si
, pi =

si∑
i∈ALL

si
. (1)

In Fig.3(A), we assume the probability of page yi ∈ Y points to Y0 is ei =∑
j /∈Ret

nij , where nij is the initial probability that page i points to page j.

In Fig.3(B), the page yi ∈ Y has three kinds of links: links to Q, links to Y ,
and links to Y0. Thus, we get (1 − π) + ei +

∑
j∈Ret

nij = 1.

We define the link matrix U = {uij |i, j ∈ (1, n)} as,

uij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uii = 1
∑
j

uij = 0 Dangling page

1
∑
j

uij > 0 and∃ link (i → j)

0
∑
j

uij > 0 and � link (i → j).

For the Y , we get

(1 − π) +
∑

j∈Ret

βuij +
∑

j /∈Ret

βuij = (1 − π) + β
∑

j∈ALL

uij = 1
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⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β =
π∑

j∈ALL

uij
=

π

OutlinkNum(i)
, nij = π

uij

OutlinkNum(i)

ei = π(1 −

∑
j∈Ret

uij

OutlinkNum(i)
) = π(

∑
j /∈Ret

uij

OutlinkNum(i)
).

(2)

For the Y0, which is showed in Fig.3(C), we get

ρ =
C

C + D
=

Ref − B

N − Ret
=

γN − πRet

N − Ret
≈ γN − πRet

N
≈ γ.

(1 − ρ) + D0 +
∑

i∈Ret

di = (1 − ρ) + β
∑

j /∈Ret

∑
i/∈Ret

uji + β
∑

j /∈Ret

∑
i∈Ret

uji = 1

⇒ D0 = ρ

∑
j /∈Ret

∑
i/∈Ret

uji

∑
j /∈Ret

OutlinkNum(j)
, di = ρ

∑
j /∈Ret,i∈Ret

uji

∑
j /∈Ret

OutlinkNum(j)
. (3)

3.3 The Link Matrix

We assume the links among the pages in set Y composed the link matrix U .

U =

⎛
⎜⎜⎜⎝

u11 u12 . . . u1n

u21 u22 . . . u2n

...
...

. . .
...

un1 un2 . . . unn

⎞
⎟⎟⎟⎠ Ũ =

⎛
⎜⎜⎜⎜⎜⎝

u11 u12 . . . u1n AA1

u21 u22 . . . u2n AA2

...
...

. . .
...

...
un1 un2 . . . unn AAn

BB1 BB2 . . . BBn BB0

⎞
⎟⎟⎟⎟⎟⎠

Adding the set Y0 , U changes to Ũ . Where

AAi =
∑

j /∈Ret

uij , BBi =
∑

j /∈Ret,i∈Ret

uji, BB0 =
∑

i,j /∈Ret

uij .

We normalize the Ũ by

m̃ij =
ũij∑

j

ũij
i ∈ (1, n] ; ãi =

ũij∑
j

ũij
i ∈ (n,ALL) ;

bi =

∑
j /∈Ret,i∈Ret

uji

∑
j /∈Ret

OutlinkNum(j)
; B0 =

∑
j /∈Ret

∑
i/∈Ret

uji

∑
j /∈Ret

OutlinkNum(j)
.

Adding the query , we get the transfer matrix T ,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 p1 p2 . . . pn p0

1 − π n11 n12 . . . n1n e1

1 − π n21 n22 . . . n2n e2

...
...

...
. . .

...
...

1 − π nn1 nn2 . . . nnn en

1 − ρ d1 d2 . . . dn D0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ 0 P p0

1 − π πM πA
1 − ρ ρB ρB0

⎞
⎠ .
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Where A = (a1, a2, · · · , an)′,B = (b1, b2, · · · , bn). P is the normalized value of
TFIDF of Q to page yi(yi ∈ Y ). p0 is the sum of normalized value of TFIDF of Q
to pages in Y0.

For a giving retrieval system, we could compute the B0 and Bi(i ∈ (1, n)).
We can get

T′ =

⎛
⎝ 0 1 − π 1 − ρ

P ′ πM ′ ρB
p0 πA′ ρB0

⎞
⎠ .

3.4 Computing Equation

From the equation T ′X = X , we can get,
⎛
⎝ 0 1 − π 1 − ρ

P ′ πM ′ ρB
p0 πA′ ρB0

⎞
⎠

⎛
⎝x0

Y
y0

⎞
⎠ =

⎛
⎝x0

Y
y0

⎞
⎠

x0 = (1 − π)‖Y ‖1 + (1 − ρ)y0 (4)
Y = x0P

′ + πM ′Y + ρy0B
′ (5)

y0 = x0p0 + πA′Y + ρB0y0 (6)
x0 + ‖Y ‖1 + y0 = 1 (7)

As the T is stochastic matrix, we get (7).
Changing (6), we get,

y0 =
x0

1 − ρB0
p0 +

π

1 − ρB0
A′Y . (8)

Changing (5), we get,

(I − πM ′ − ρπ

1 − ρB0
B′A′)Y = x0(P ′ +

ρp0

1 − ρB0
B′) . (9)

Assuming C = ρ
1−ρB0

B′, we get,

y = x0[I − π(M ′ + CA′)]−1(P ′ + p0C) . (10)

Assuming V = [I − π(M ′ + CA′)]−1(P ′ + p0C), we get,

Y = x0V ⇒ ‖Y ‖1 = x0‖V ‖1 . (11)

Changing (4), we get,

[1 − (1 − π)‖V ‖1]x0 = (1 − ρ)y0

y0 =
1 − (1 − π)‖V ‖1

1 − ρ
x0 . (12)

Combining the formula (7)(11)(12), we get

x0 =
1

1 +
1 + (π − ρ)‖V ‖1

1 − ρ

; y0 =
1 − (1 − π)‖V ‖1

1 − ρ
x0 ; Y = x0X . (13)
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4 Experimental

4.1 Experimental Setup

We construct experiment in order to verify the retrieval methods of our approach
described in Section 3.

The experiment is constructed by using the TREC WT10g test collection, which
contains about 1.69 million Web pages. Stop words have been eliminated from
all Web pages in the collection based on the stop-word list and stemming has
been performed using Porter Stemmer. [7]

(1) Selecting test pages. We construct the set R with all pages which are
relevant to the query qi, i ∈ (1, 100). The data-set D can be set up just as

di =

⎧⎪⎨
⎪⎩

di, (di ∈ R);
dj , ∃ (link(i → j) ∧ link(j → k)), (j /∈ R; i, k ∈ R)
dj , dl ∃ (link(i → j) ∧ link(j → l) ∧ link(l → k)), (j, l /∈ R; i, k ∈ R) .

We name all pages in D from 1 to 12486 and pick up all out-links from those
pages.

(2) Computing the old Pagerank. In order to compare the result of new
method with the traditional one, we compute the pagerank of the every page in
traditional way firstly. In this method, we ignore the last column of link matrix
P , and it guarantee the link matrix is square one.

It must be noticed that the pagerank value of pages in our experiment are
not very precise. The reason is that we consider the link information of pages
belonged to the data set D only. There may be many important links out of
the D have not be considered. Table. 1 shows the top 10 results of pagerank
according to the traditional method.

(3) Computing the NewPR. We compute the NewPR by using Matlab
with the parameter of link matrix P . The formula (1)(2)(3)(13)have been men-
tioned above. In the program, we assume the two parameters π = 0.6 and ρ = 0.1.
Table. 3 shows the NewPR of the query 511. The detail of this query can be
checked in WT10g. Due to the capability of the computer, we compute the first
5000 pages.

4.2 Experiment Results

In order to compare the two methods, the OldPR and the NewPR, we need to
consider two questions, (1) Are the NewPR and the OldPR similar? (2) Is the
NewPR better than OldPR?

We can compute the Spearman Rank Correlation Coefficient in order to de-
termine the difference between the OldPR and the NewPR. The Spearman Rank
Correlation Coefficient is defined by

r′ = 1 − 6
∑ d2

N(N2 − 1)
.
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Table 1. OldPagerank Table 2. TFIDF Table 3. NewPR

Table 4. Rank Table 5. Precision

Table 6. Feedback Rele/AllRele

Where N is the number of total pages, and d is the difference in statistical
rank of corresponding variables, and r′ ∈ [−1,+1]. r′ = 0 means that there
is no correlation between the two quantities. They are completely independent
of one another. Table.4 shows the Old Rank, New Rank and the d2. We can
compute r′ = 0.0046 of all 5000 pages. That means the two algorithms, OldPR
and NewPR are almost independent. This result answers the first question.

For the second question, we check the first top 100, 200, · · · , 5000 pages of
two methods, calculate the number of pages related to the query 511. In order to
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compare the speeds of two methods’ of reaching the maximal number of relevance
pages, we compute the precision, ratio of relevance pages in the feedback pages
list over all relevance pages. The result is showed in Table.5. From Table.6, we
can find that the speed of new method is faster than that of old one. In the new
method, it reach the top value in about 800 pages, meanwhile it needs almost
all 5000 pages in the old method.

5 Conclusion

This paper introduces the methods of information retrieval on the web, and the
concept of TFIDF and Pagerank. Due to the different methods of these two kinds
of technologies use, the TFIDF cannot reflect the link information among pages.
Meanwhile the Pagerank does not consider the content of pages.

We draw up a new framework by combining the TFIDF and Pagerank in order
to support the precise results to users. We test the framework by using TREC
WT10g test collection. The experimental result shows that the new method gives
a better effect. But we find that the effect is not so distinct, we want to consider
the in-link of every page in the future. In other side, we should change the value
of α, which affects the final result of page order.

However, in order to satisfy the users’ actual information need, it is more
important to find relevant Web page from the enormous web space. There-
fore, we plan to address the technique to provide users with personalized infor-
mation.
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